sleep()
sleep(secs)
將執行中的 thread 暫停給定的秒數 secs
。通常用於模擬延遲、建立暫停或間隔 requests。 secs
可以是 float 以指示更精確的睡眠時間。
sleep()
函數會 blocks (阻塞) 程式碼的執行,這意味著在睡眠期間不會運行其他程式碼。
這可能不適合程序需要響應使用者的輸入或其他即時事件的情況。 如果您需要 non-blocking 延遲功能,可能需要 threading 或 asyncio...。
sleep()
不適合在 GUI 應用程序中使用它,因為它會使 GUI 無響應。
在這種情況下,請使用計時器事件或單獨的 threads 來處理計時。
在 Windows 8.1 及更高版本上,sleep()
使用高解析度計時器,提供 100 奈秒 (nanoseconds) 的解析度。
範例
有時,API 在一定時間內可以發送的 requests 數量有限制。在這種情況下,您可能需要等待才能發出另一個請求,以避免達到速率限制。
import requests
import time
for i in range(10):
response = requests.get('http://example.com')
print(response.status_code)
time.sleep(1) # Wait for 1 second before the next request
import time
def my_func():
print("Function executed")
while True:
my_func()
time.sleep(0.5) # Wait for 1 seconds before running the function again
執行結果:
Function executed
Function executed
Function executed
Function executed
...
範例 – 倒數計時器
import time
def countdown(t):
while t:
mins, secs = divmod(t, 60)
timer = '{:02d}:{:02d}'.format(mins, secs)
print(timer, end="\r")
time.sleep(1)
t -= 1
print('Countdown over!')
# start countdown of 10 seconds
countdown(20)
import time
class Countdown:
def __init__(self, hours=0, minutes=0, seconds=0):
self.hours = hours
self.minutes = minutes
self.seconds = seconds
def convert_seconds(self):
total_seconds = self.hours * 3600 + self.minutes * 60 + self.seconds
return total_seconds
def countdown(self):
t = self.convert_seconds()
while t:
hours, remainder = divmod(t, 3600) # Calculate hours
minutes, seconds = divmod(remainder, 60) # Calculate other
timer = '{:02d}:{:02d}:{:02d}'.format(hours, minutes, seconds)
print(timer, end="\r")
time.sleep(1)
t -= 1
print('Countdown over!')
# With only seconds
countdown_time = Countdown(seconds=90)
countdown_time.countdown()
# With only minutes and seconds
countdown_time = Countdown(minutes=2, seconds=30)
countdown_time.countdown()
# With hours, minutes and seconds
countdown_time = Countdown(hours=0, minutes=1, seconds=30)
countdown_time.countdown()
範例 – 測量函數的性能
import time
import random
def test_algorithm(func, data):
start_time = time.perf_counter()
func(data)
end_time = time.perf_counter()
return end_time - start_time
def algorithm1(data):
return sorted(data)
def algorithm2(data):
return list(set(data))
data = [random.randint(0, 100000) for _ in range(100000)]
time1 = test_algorithm(algorithm1, data)
time2 = test_algorithm(algorithm2, data)
print(f'Algorithm 1 took: {time1:4f} s')
print(f'Algorithm 2 took: {time2:4f} s')
測量函數的性能 – Pythonic
import time
import random
from functools import wraps
def timer_decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
start_time = time.perf_counter()
result = func(*args, **kwargs)
end_time = time.perf_counter()
print(f'{func.__name__} took: {end_time - start_time:4f} s')
return result
return wrapper
@timer_decorator
def algorithm1(data):
return sorted(data)
@timer_decorator
def algorithm2(data):
return list(set(data))
data = [random.randint(0, 100000) for _ in range(100000)]
algorithm1(data)
algorithm2(data)
測量函數的性能 – 遞迴 ver.
_is_recursive_call
預設為 False
,因此對於頂層調用 (直接進行的調用),將設置開始和結束時間並打印執行時間。 對於遞迴調用,_is_recursive_call=True
,因此不會設置開始和結束時間,也不會打印執行時間。
import functools
import random
import time
def measure_execution_time(func):
'''
_is_recursive_call is False by default, so for the top-level call (the one you make directly),
the start and end times will be set and the execution time will be printed.
For the recursive calls, _is_recursive_call=True,
so the start and end times won't be set and the execution time won't be printed.
'''
@functools.wraps(func)
def wrapper(*args, _is_recursive_call=False, **kwargs):
if not _is_recursive_call:
wrapper._start_time = time.perf_counter() # Set the start time only for the top-level call
result = func(*args, **kwargs) # Call the function
if not _is_recursive_call: # If this is the top-level call
wrapper._end_time = time.perf_counter() # Set the end time
print(f"{func.__name__} executed in {wrapper._end_time - wrapper._start_time:.3f} s.")
return result
return wrapper
@measure_execution_time
def fibonacci(n): # Fibonacci sequence
if n < 2:
return n
return fibonacci(n-1, _is_recursive_call=True) + fibonacci(n-2, _is_recursive_call=True)
@measure_execution_time
def algorithm1(data):
return sorted(data)
@measure_execution_time
def algorithm2(data):
return list(set(data))
data = [random.randint(0, 100000) for _ in range(100000)]
algorithm1(data)
algorithm2(data)
fibonacci(20)
範例 – debugging
詳見: functools【可調用物件】
import functools
import random
import time
# Define debugging decorator
def debug(func):
"""Prints the function signature and return value"""
@functools.wraps(func)
def wrapper_debug(*args, **kwargs):
args_repr = [repr(a) for a in args]
kwargs_repr = [f"{k}={v!r}" for k, v in kwargs.items()]
signature = ", ".join(args_repr + kwargs_repr)
print(f"Calling {func.__name__}({signature})")
start = time.perf_counter()
value = func(*args, **kwargs)
end = time.perf_counter()
print(f"{func.__name__} returned {value!r} in {end-start:.5f} secs")
return value
return wrapper_debug
@debug
def algorithm1(data):
return sorted(data)
@debug
def algorithm2(data):
return list(set(data))
data = [random.randint(0, 10) for _ in range(10)]
algorithm1(data)
algorithm2(data)
執行結果:
Calling algorithm1([2, 6, 1, 8, 6, 0, 7, 5, 10, 7])
algorithm1 returned [0, 1, 2, 5, 6, 6, 7, 7, 8, 10] in 0.00000 secs
Calling algorithm2([2, 6, 1, 8, 6, 0, 7, 5, 10, 7])
algorithm2 returned [0, 1, 2, 5, 6, 7, 8, 10] in 0.00000 secs
參考資料
time — Time access and conversions — Python 3.11.4 documentation
「耗時測試」python time包中的time()和process_time()如何選擇? - 資訊咖
Python 中的定時器函式 | D棧 - Delft Stack
Last updated
Was this helpful?