import functools
class MultiProcessor():
@functools.singledispatchmethod
def process(self, data):
raise NotImplementedError("Unsupported type")
@process.register
def _(self, data: int):
print(f"Processing an integer: {data}")
# Do something specific to int
@process.register
def _(self, data: str):
print(f"Processing a string: {data}")
# Do something specific to str
@process.register
def _(self, data: list):
print(f"Processing a list: {data}")
# Do something specific to list
# Usage
processor = MultiProcessor()
processor.process(42) # Output: Processing an integer: 42
processor.process("Hello world") # Output: Processing a string: Hello world
processor.process([1, 2, 3]) # Output: Processing a list: [1, 2, 3]
PYTHON
import cv2
import numpy as np
from functools import singledispatchmethod
class ImageProcessor():
@singledispatchmethod
def process(self, image):
print("Not implemented for this type.")
@process.register
def _(self, image: cv2.VideoCapture):
# Processing for video captured from a camera
print("Processing video capture.")
@process.register
def _(self, image: np.ndarray):
# Processing for an image loaded into a NumPy array
print("Processing numpy array.")
def reduce(function, iterable, initializer=None):
it = iter(iterable)
if initializer is None:
value = next(it)
else:
value = initializer
for element in it:
value = function(value, element)
return value
範例:
PYTHON
import functools
def bitwise_or_operation(a, b):
return a | b
data = [1, 2, 4, 8, 16, 32]
result = data[0]
# Simple loop
for i in range(1, len(data)):
result = bitwise_or_operation(result, data[i])
print(result) # Output: 63
# reduce()
result = functools.reduce(bitwise_or_operation, data)
print(result) # Output: 63
# reduce() + lambda
result = functools.reduce(lambda a, b: a | b, data)
print(result) # Output: 63
PYTHON
import functools
def multiply(x, y):
return x * y
numbers = [1, 2, 3, 4, 5]
product = 10
# Simple loop
for num in numbers:
product = multiply(product, num)
print(product) # Output: 1200
# reduce()
product = functools.reduce(multiply, numbers, 10)
print(product) # Output: 1200
# reduce() + lambda
product = functools.reduce(lambda x, y: x * y, numbers, 10)
print(product) # Output: 1200
PYTHON
import cv2
import functools
from pathlib import Path
# You might need to resize or crop them depending on your use case
def blend_images(image1, image2, alpha=0.5):
return cv2.addWeighted(image1, alpha, image2, 1 - alpha, 0)
file_dir = r".\001"
image_files = Path(file_dir).glob("*.png")
images = [cv2.imread(str(image)) for image in image_files]
blended_image = functools.reduce(blend_images, images)
cv2.imwrite('output.jpg', blended_image)